Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes.

نویسندگان

  • M H Gelb
  • J H Min
  • M K Jain
چکیده

For membrane-bound enzymes that act on substrates that partition between the membrane and aqueous phases, it is possible to imagine two fundamentally different mechanisms. Interfacial enzymes must access their substrate from the membrane phase, in other words substrate in the membrane binds directly to the active site of the enzyme at the membrane without mixing with substrate molecules in the aqueous phase. On the other hand, non-interfacial enzymes, either bound to membranes or present in the aqueous phase, must access their substrates from the aqueous phase, i.e. substrate in the aqueous phase binds directly to the enzyme without mixing with substrates in the membrane phase. An interfacial mechanism for some enzymes including secreted and cytosolic phospholipase A(2) and phosphoinositide 3'-hydroxykinase was rigorously proven by demonstrating that these enzymes processively hydrolyze many phospholipids without desorbing from the surface of vesicles (scooting mode). The non-interfacial mechanism is more difficult to establish because it cannot be addressed by steady-state kinetics. Using a pre-steady-state method in which the enzymatic velocity is measured during the time it takes for substrate to exchange between vesicles, a non-interfacial mechanism was proven for vesicle-bound plasma platelet activating factor acetylhydrolase. This enzyme prefers more water-soluble phospholipids such as those with sn-2 acetyl or oxidatively truncated fatty acyl chains, and this is readily explained by the mandatory access of substrate from the aqueous phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anionic/Non-ionic Surfactants in Aqueous Phase of Thin Film Composite Poly(Paraphenylene Terephthalamide) Nanofiltration Membranes

In this work, the Interfacial interfacial polymerization (IP) technique was employed using terephthaloyl chloride (TPC) and p-phenylenediamine (PPD), as reactant monomers, to prepare poly(paraphenylene terephthalamide) thin film composite (TFC) nanofiltration on polyethersulphone (PES) support layer. The effects of six different anionic and non-ionic surfactants, in the aqueous phase on the mor...

متن کامل

Catalytic Conversion of Lipophilic Substrates by Phase constrained Enzymes in the Aqueous or in the Membrane Phase

Both soluble and membrane-bound enzymes can catalyze the conversion of lipophilic substrates. The precise substrate access path, with regard to phase, has however, until now relied on conjecture from enzyme structural data only (certainly giving credible and valuable hypotheses). Alternative methods have been missing. To obtain the first experimental evidence directly determining the access pat...

متن کامل

The interfacial binding surface of phospholipase A2s.

For membrane-associated enzymes, which access substrate from either a monolayer or bilayer of the aggregate substrate, the partitioning from the aqueous phase to this phospholipid interface is critical for catalysis. Despite a large and expanding body of knowledge regarding interfacial enzymes, the biophysical steps involved in interfacial recognition and adsorption remain relatively poorly und...

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

Self-assembling of polymer-enzyme conjugates at oil/water interfaces.

Interface-binding enzymes are desirable for biphasic reactions in that they offer simultaneous access to substrates dissolved in both phases across the interface. It has been shown that conjugating water-soluble enzymes with hydrophobic polymers facilitated the assembling of enzymes at oil/water interfaces. In this work, the interfacial assembling of alpha-chymotrypsin conjugated with polystyre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1488 1-2  شماره 

صفحات  -

تاریخ انتشار 2000